Science blog
Orbital mechanics affect methane levels
Antarctic lake keeps its secrets for now
How snakes lost their legs
Researchers ponder cancer origins
Forming social networks a no-brainer
'Niceness' partly genetic, say scientists
Omega-3 may keep blindness at bay
Coral shines light on rainfall records
Old bone proves Lucy was no swinger
Scientists unlock cosmic ice riddle
Study links pesticides to Parkinson's
Digital world growing faster every year
Energy drinks put kids at risk: report
Robotics speed up cancer drug development
Zinc cuts short the common cold
Counting kicks in at 18 months
NASA spacecraft unravels comet mystery
Astronomers dig up cannibalised galaxy
Study links extreme weather to climate change
Turkey quake gives warning clues
US scientists build first 'antilaser'
Website meltdown leaves scientists fuming
Earth 'unrecognisable' by 2050: experts
Canola fungus genome unravelled
Canola fungus genome unravelled
Scientists have sequenced the genome of a fungus that's destroying canola crops worldwide.

Leptosphaeria maculans has been the scourge of farmers since it was first identified in crucifers - a family of flowering plants that includes cabbages and mustard - back in 1791. Its global spread has seen it cause substantial damage to crops over the last forty years.

In 2003, the fungus, also known as blackleg, resulted in canola crop losses of up to 90% in some parts of Australia.

L. maculans reproduces prolifically, allowing it to quickly mutate into genetically diverse populations rapidly overcoming the effectiveness of new resistant varieties of canola.

Scientists led by Professor Barbara Howlett from the University of Melbourne together with researchers from Curtin University in Perth, and the French National Institute for Agricultural Research have now discovered how it achieves this.

Their study, reported in the journal Nature Communications, mapped the 12,469 genes that make up the genetic blueprint of L.maculans. They found the fungus has a patchwork of alternating gene rich and gene poor blocks forming a structure not seen before.
Rich blocks, poor blocks

Howlett says the gene rich blocks contain essential genetics necessary for the organism to survive.

The genetically-poor regions are caused by genes made inactive by a process peculiar to fungi called RIP (Repeating-induced Point Mutation). This produces high mutation rates through nucleotide substitution of cytosine to thymine and guanine to adenine.

Howlett says the gene poor regions are important.

"Our study revealed it is the location of the disease related genes within the poor DNA, which allows the genes to be readily mutated, lost or gained. This enables the blackleg fungus to cause disease outbreaks on canola varieties with particular resistant genes."

The disease works through proteins called effectors, which attack canola through its leaves before moving to the stems, inhibiting plant defences.

Professor Eileen Scott from the University of Adelaide says the work takes our knowledge of this fungus to the next level.

"By explaining how the disease invades the plant we have a better understanding of what the fungus is likely to do to overcome resistant genes in canola."
Targeting specific genes

Howlett says using information from the genome sequence, researchers have developed molecular markers that can predict whether disease outbreaks will occur.

"If an epidemic is predicted then farmers can plant a different canola variety which will not readily succumb to disease."

Canola breeder Professor Wallace Cowling from the University of Western Australia says the study explains why the fungus can adapt so quickly to new resistant strains, which haven't been grown previously.

"It will eventually help breeders keep ahead of the fungus by understanding how it works in nature."

Brain efficiency comes from parents
Backward bending light key to stealth
Signs of 'alien life' found in meteorites
Accurate blood test for Down's
Disaster volunteers at risk: study
Elephants smart as chimps, dolphins
Gadgets ruining people's sleep
Why skin doesn't dissolve in the bath
Astronomers find old heads in a young crowd
Paper leads to perfect beer head
Researchers locate brain's loudness map
Jamming may leave GPS in the wilderness
Pain washes guilt away
Quake could alter Tokyo risk: experts
Japan meltdown not like Chernobyl: expert
Dreamtime astronomers understood meteors
CERN restarts search for cosmic origins
Nuclear Contamination: What to Do
Bet-hedging 'key to natural selection'
Humans age same as other primates
US overdue, under-prepared for huge quake
Sperm's egg-seeking secrets revealed
Lasers to nudge space junk out harm's way
Researchers uncover gastro's sugary secret
Kepler probes inside swollen red giant
Randomness could 'improve democracy'
Moonageddon: Apocalypse not
Museum unveils Columbian mammoth
Ink-jet inspire scientists to make skin
Seaweed offers clues against malaria
Christchurch quakes may be connected
Solar storms pose risk to technology
Study finds fences thwart cane toad
Mobile phone alters brain activity
Sticky dots approved for clinical trial
Humans stink worse than other animals
Putting the bounce in carbon balls
Sulphur secrets uncovered
Cool laser makes atoms march in time
Hot flashes may be a sign of good heart
Scientists see the birth of a new planet
X-ray expectations change search methods
Eucalypt-harming fungus here to stay
Life elements came from outer space
Cricket wimps use perfume to find mates
Orphan planets could support life
Speech lights up visual cortex in blind
How the Sun loses its spots
Cancer resistance mechanism found
Fungus turns Amazonian ants into zombies
Tiny grains record solar system's infancy
Antarctic ice forming beneath glaciers
Visit Statistics